Improving the production line
It is essential for these robots to run efficiently and continuously, which means that if any endof-arm tools become damaged, the team would face setbacks that could take hours to resolve. Traditionally, the tools are produced in aluminum, with part production outsourced to an external company.
“The end-of-arm robot tools are complex, and if any part of the stem gets bent, the whole tool is out of action,” explained Martin Grisdale, Company Director, Form Automation Ltd. “Replacing an aluminum part would have incurred significant delays to the production line. Thankfully, with the F370, I can now have a new tool within just a few hours. Coupled with that, the cost to produce 3D printed end-of-arm tools is less than that of producing the same parts in aluminum.”
Produced using Stratasys’ flexible TPU elastomer, the 3D printed stem is more than 50% lighter than a conventionally-produced aluminum part — resulting in better machine performance.
“As the 3D printed version of this tool is much lighter, only one engineer is required to refit the replacement tool to the machine,” Grisdale said. “The reduced weight also improves the efficiency of our robots, which can now run at much faster speeds thanks to the lighter tools.”
The company has also seen a reduction in the frequency of damage to the end of arm tools, the stems of which would previously bend or snap easily. Thanks to the resilience and flexibility of the TPU material, this is now a much less frequent occurrence.